WAVE on Wheels Outreach

Croc Talk

Grades 6-8

Time requirement
1 Hour

Group size and grade
Up to 50 students maximum

Materials
1 American Alligator

Crocodilian Artifacts Bin

WAVE Tablecloth

Goal
Through a live alligator encounter, students will be excited, engaged, and educated about the wonders of crocodilian life and the importance of conservation.

Objectives
1. Students will be able to list 5 adaptations a crocodilian has for aquatic life including a combination of internal and external body parts as well as behaviors.
2. Students will be able to physically differentiate between an alligator and a crocodile.
3. Students will be able to discuss biological factors relating to crocodilian population numbers, individual growth rates, and reproduction success.
4. Students will be able to describe that all energy in a food web originated from the sun.
5. Students will be able to discuss crocodilian conservation efforts as well as how they can help save crocodilians and other aquatic animals.
6. Students will be able to design and describe a method for monitoring and minimizing human impacts on crocodilian environments.
Theme

Crocodilians are unique reptilian species that play an important role in their environment.

Kentucky Core Academic Standards – Science

Sixth Grade – MS. Matter and Energy in Organisms and Ecosystems

06-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organism and populations of organisms in an ecosystem.

 LS2.A: Interdependent Relationships in Ecosystems

Seventh Grade – MS. Growth, Development, and Reproduction of Organisms

07-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

07-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Eighth Grade – MS. Interdependent Relationships in Ecosystems

08-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Eighth Grade – MS. Human Impacts

08-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

 ESS3.C: Human Impacts on Earth Systems

Background

Crocodilians are Reptiles

Alligators and crocodiles are reptiles. Reptiles are cold-blooded or ectothermic animals, which means they depend on external sources to maintain their body temperature. Scales or scutes protect reptiles from abrasions and loss of body moisture. Reptiles breathe air through lungs. Most reptiles hatch from eggs which are typically covered in soft, leathery shells. Reptiles include crocodilians, snakes, turtles, and lizards.

A Crocodile or an Alligator

The term “croc” is used to describe any member of the crocodilian species: alligators, crocodiles, caimans, and gharials. Alligators and crocodiles are commonly misidentified, but by observing several key differences, it is easy to tell them apart. Alligators reach average lengths
of 15 feet and weigh up to 1,000 pounds while crocodiles can grow over 20 feet long and weigh more than 2,300 pounds. Alligators are primarily freshwater crocs with a “U” shaped snout, whereas crocodiles are capable of living in saltwater and possess a “V” shaped snout. In alligators, the upper jaw is wider than the lower and completely overlaps which results in their lower teeth being almost completely hidden when the mouth closes. In crocodiles, the upper jaw and lower jaw are approximately the same size so upper and lower teeth are visible when the mouth is closed. Both species have specialized glands which secrete salt, but the crocodile’s glands are better adapted to a saltwater environment while the alligator’s glands have faded in function.

Another physical difference is their coloration. The two species of alligator tend to be almost black in coloration while most species of crocodile tend to be a greenish-grey. Darker coloration in alligators allows for better camouflage in muddy, shady freshwater environments. This coloration also allows better heat absorption from the sun allowing alligators to survive in cooler climates. Greenish-grey coloration allows crocodiles to blend in to algae-filled or sunlit saltwater environments. Lighter coloration does not absorb heat as well so crocodiles are restricted to warmer climates.

Crocs in the Ecosystem

Crocodilians serve an important role in the ecosystem. “Gator holes” are dug by a croc using its feet and snout. The holes collect water and are used as a refuge by surrounding wildlife during the dry season and a lure for prey by the croc. Crocodilians are also scavengers, which means they feed on the carcasses of dead animals, which balances populations and rids the area of disease and debris.

A Croc’s Adaptations to Aquatic Life

A croc has many features which make it suitable for living in water. Large, powerful tails are used for propelling through the water, while strong webbed feet are ideal for paddling. The dark, bumpy appearance provides camouflage resembling a floating log. Crocs also have excellent eye sight for both above and below water, and they possess an extra eyelid, called a nictitating membrane, that functions similar to underwater swim goggles. Their ears are hidden behind slits that close when they dive under water. Their bite force is second to none in the animal kingdom, up to 3,700 pounds (the weight of an adult walrus) per square inch (about the size of your thumbnail). Ouch!

Growth rates of crocodilians can be effected by many environmental and genetic factors. Crocodilians possess indeterminate growth meaning they have the potential to grow their entire lives. However, as they reach adult size more energy is used for reproduction, defending territory, and body maintenance than on new growth. It is well documented that growth rates in ectotherms are significantly affected by the amount of food intake. More recent studies are also showing that water temperature and carbon dioxide levels may affect the growth rate and potential as these factors can effect metabolic rates. Additional studies suggest influences such
as differentiating diets play a major role in embryonic development, which may lead to growth abnormalities. Over time, these issues could lead to genetic variations influencing inherited abnormalities.

Crocodilians are typical thought of as solitary animals. There have been many research studies conducted on the feeding habitats of crocodilians to determine if groups observed feeding together are cooperatively hunting or opportunistically feeding in areas with high prey volume. Results are mixed as well as opinions on social hunting behavior. Some crocodilians also show symbiotic relationships with other species including mutualistic relationships between the Egyptian Plover and the Nile Crocodile. A few species have even been known to “play”. In captivity as well as in the wild, crocodilians have been observed playing with, biting, and pushing a floating ball, blowing bubbles under water, carrying bright flowers in their mouth and placing them in various locations, and even repeatedly surfing in waves along coastlines.

With breeding season in the spring, female alligators lay between 30 and 50 leathery eggs in mid-summer. The mother alligator then buries the eggs in a nest and remains close by, protecting them from egg-stealing predators such as raccoons. Since alligators lack gender-determining chromosomes, temperature differentiation leads to male or female offspring. Cooler, shaded areas of the nest led to more females and warmer, sun-lit areas led to more males. If the mother gator senses too much pressure from an unsafe situation, she will gather the eggs in her mouth and relocate her offspring to a new nesting site. After hatching, the mother alligator takes her young immediately to the water in her mouth. Once in the water, the mouth and her hatchlings form a social group called a pod, which offers protection from predators, lasting anywhere from a few months to a few years.

Croc Diets

Crocodilians are carnivores that eat a variety of animals near their habitats which may include but are not limited to: fish, turtles, birds, frogs, pigs, deer, buffalo, and monkeys. Crocs swallow their prey whole rather than chewing. They will tear off large portions, if the animal is too large to swallow whole, by a process called the death roll. After biting the prey the croc rolls around, essentially juggling its food around in its mouth until the right position is reached to toss its head back and slide the food down its throat. Some species of croc can eat up to half of their body weight in one meal. These large meals are converted into fat reserves located in the tail, and these fat reserves may allow a croc to survive over a year without eating.

Food Web Connections

As with most apex predators, crocodilians play a critical role in their ecosystem as a top down control mechanism for the environment’s food web. Apex predators consume tertiary and/or secondary consumers, which consume primary consumers, which consume producers, which produce energy from the sun through photosynthesis. The main source of energy for all ecosystems initiates from the sun in the form of solar energy. Through the process of photosynthesis, plants convert this energy into oxygen and glucose. Because of this conversion,
green plants, some bacteria, an algae are labeled as producers. An animal, such as a deer, who consumes the plant, is known as a primary consumer, because it receives the energy from the plant which converted the energy from the sun. The croc who eats the deer that feeds on the plant which converted the sunlight is known as a secondary consumer, hence a process that directly related back to the sun as the primary energy source. An apex consumer is the top of the food chain or web with few to no natural predators at adult size.

Croc Conservation

About 40 years ago, American alligators were close to extinction. Because the fashion industry targeted alligator skin for exotic leather products, the American alligator was listed as an endangered species in 1967. Fortunately, by 1987, alligators made a comeback thanks to the conservation efforts of several organizations. These efforts sustained, and the American alligator was removed from the Endangered Species list. As of today, alligator harvesting is being regulated closely by state authorities in the form of hunting permits. Alligator skin and meat is still desired; however, a portion of the profits generated from these goods are contributed to alligator management and research.

Increased pressures from invasive species and reduced prey populations can have negative effects on crocodilian species. As more prey items are harvested from the environment, either by humans or invasive species such as the Burmese python, fewer food resources are left for large predators. A limiting resource is an environmental condition that limits the growth, abundance, or distribution of an organism or a population of organisms in an ecosystem. Habitat reduction and fragmentation may also be a limiting factor. Consider the fact that an adult American alligator may have a home range of over 1,000 acres.

Ongoing and future research in the conservation and preservation of crocodilian species is critical. The Association of Zoos and Aquariums’ (AZA) Crocodilian Advisory Group (CAG) has supported several conservation efforts and research projects in recent years. These efforts include habitat restoration & reintroduction (including radio tracking) of the Chinese Alligator (*Alligator sinensis*). The Chinese alligator is considered one of the most critically endangered crocodilians. This is a result of near total habitat loss and extremely small and fragmented wild populations. Plans for population recovery lie mostly with wetland restoration and the reintroduction of captive-reared animals.

Another project supported by the CAG was sending crocodilian biologists to India during the large die-off of the Indian Gharial (*Gavialis gangeticus*). After 2007, the wild population size was estimated to be 250 breeding adults. This drastic reduction in numbers over a 60-year period has been attributed to a number of factors including: habitat alteration, hunting for skins, harvest for medical uses, egg collection, and accidental drowning in fishing nets. Human influences on riverine habitats are another major threat to the Gharial, with sand-mining, agriculture, irrigation channels, dams, barrages, and modifications to the river course all combining to create an irreversible loss of Gharial habitat.
Finally, CAG is supporting community level education and conservation programs for the Philippine Crocodile (*Crocodylus mindorensis*). The Mabuwaya Foundation has used a combination of communication, education, and public awareness campaigns, community empowerment and local capacity building to implement localized protection strategies. A local protection group of farmers and fishermen has been trained to manage sanctuaries. In order to increase hatchling survival rates and assist in the recovery, a head-start program successfully raises and releases juveniles.

The National Park Service, in partnership with other organizations, is working on another ongoing project in the Florida everglades in the management of the highly invasive species, the Burmese python. These snakes are capable of reaching lengths of 23 feet and having the diameter of a telephone pole. Native crocodilians of Florida are naturally the apex predator; however, these non-native snakes are now competing with, and eating, native crocodilians species.

Vocabulary

Behavior – anything that an organism does involving action and response to stimulation
Biodiversity – diversity among and within plant and animal species in an environment
Conservation – the study of the loss of Earth’s biological diversity and ways this loss can be prevented
Ecosystem – a system, or a group of interconnected elements, formed by the interaction of a community of organisms with their environment
Environment – the external conditions, resources, stimuli etc. with which an organism interacts
Genetics – the science of heredity, dealing with resemblances and differences of related organisms resulting from the interaction of their genes and the environment
Limiting factor - a factor present in an environment that controls a process, particularly the growth, abundance or distribution of a population of organisms in an ecosystem
Mutualism - two organisms of different species exist in a relationship in which each individual benefits from the activity of the other
Oviparity - producing eggs that mature and hatch after being expelled from the body
Photosynthesis - process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water
Play behavior - activities performed for self-amusement that have behavioral, social, and psychomotor rewards
Pod – a small herd or school; grouping of a species
Scavenger – an animal that feeds on carrion, dead plant material, or refuse
Symbiotic - organisms that live together; however, the relationship is not necessarily beneficial to both. (ie parasite-host)
Trait – a distinguishing characteristic or quality

Extension Activities
Project WILD Activities. Please contact your state Project WILD coordinator for more information. See http://projectwild.org/KentuckyCoordinator.htm (for Kentucky) or http://www.projectwild.org/ProjectWILDCoordinators.htm (for other states).

- **Bearly Growing** – Students will compare similarities and difference between the growth of black bears and humans.

- **Bottleneck Genes** – Students will (1) describe biodiversity as it relates to natural systems, species, or individuals; (2) articulate that genetic diversity is essential to the health of a species because it facilitates adaptation to change and provides sources for new genetic material; (3) explain how natural selection favors individuals with traits adapted to their environment; and (4) explain that for a wildlife population to sustain itself, there must be enough habitat to support a healthy-sized population that will carry a healthy-sized gene diversity.

- **Career Critters** – The students will (1) identify five examples of how wild animals and plants can be used to manage some environmental problems, and (2) describe and give examples of an organism and its niche.

- **Carrying Capacity** – Students will (1) formulate and test hypotheses related to wildlife populations and carrying capacity, and (2) describe the significance of carrying capacity.

- **Changing Attitudes** – Students will (1) give an example of a change in attitudes related to a wild animal or the environment, and (2) describe factors that may influence changes in attitudes.

- **Ecosystem Facelift** – Students will (1) describe interactions or interdependency of organisms within an ecosystem; (2) articulate that managing an ecosystem as a whole, and not just for one or a few species, is essential for ensuring ecosystem diversity; and (3) relate the increase of wildlife populations to the improvement of habitats.

- **Ethi-Reasoning** – Students will (1) examine their own values and beliefs related to wildlife and other elements of the environment, (2) listen to and respect the right of other to maintain different values and beliefs, and (3) evaluate possible actions they might take that have an effect on wildlife and the environment.

- **Litter We Know** – Student will (1) identify and evaluate ways that litter pollution can endanger wildlife, and (2) propose ways to help eliminate these dangers to humans and wildlife.

- **Oh Deer!** – Students will (1) identify and describe food, water, and shelter as three essential components of habitat; (2) describe factors that influence carrying capacity; (3) define “limiting factors” and give examples; and (4) recognize that some fluctuations in wildlife populations are natural as ecological systems undergo constant change.

Alligator Quiz - http://animals.howstuffworks.com/reptiles/alligator-quiz.htm

Resources
- WAVE Foundation - http://www.wavefoundation.org
- Project Wild - http://www.projectwild.org
Project Wet - http://www.projectwet.org
Project Learning Tree - http://www.plt.org
Endangered Species Information -
http://education.nationalgeographic.org/media/endangered/
Alligator Information - http://www.biokids.umich.edu/critters/Alligator_mississippiensis/